作为网络防御的重要工具,欺骗正在迅速发展,并补充了现有的周边安全措施,以迅速检测出漏洞和数据盗窃。限制欺骗使用的因素之一是手工生成逼真的人工制品的成本。但是,机器学习的最新进展为可扩展的,自动化的现实欺骗创造了机会。本愿景论文描述了开发模型所涉及的机会和挑战,以模仿IT堆栈的许多共同元素以造成欺骗效应。
translated by 谷歌翻译
Existing integrity verification approaches for deep models are designed for private verification (i.e., assuming the service provider is honest, with white-box access to model parameters). However, private verification approaches do not allow model users to verify the model at run-time. Instead, they must trust the service provider, who may tamper with the verification results. In contrast, a public verification approach that considers the possibility of dishonest service providers can benefit a wider range of users. In this paper, we propose PublicCheck, a practical public integrity verification solution for services of run-time deep models. PublicCheck considers dishonest service providers, and overcomes public verification challenges of being lightweight, providing anti-counterfeiting protection, and having fingerprinting samples that appear smooth. To capture and fingerprint the inherent prediction behaviors of a run-time model, PublicCheck generates smoothly transformed and augmented encysted samples that are enclosed around the model's decision boundary while ensuring that the verification queries are indistinguishable from normal queries. PublicCheck is also applicable when knowledge of the target model is limited (e.g., with no knowledge of gradients or model parameters). A thorough evaluation of PublicCheck demonstrates the strong capability for model integrity breach detection (100% detection accuracy with less than 10 black-box API queries) against various model integrity attacks and model compression attacks. PublicCheck also demonstrates the smooth appearance, feasibility, and efficiency of generating a plethora of encysted samples for fingerprinting.
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
在本文中,我们介绍了Schemadb数据集;两个SQL和图形格式中的关系数据库模式的集合。由于隐私和安全的原因,数据库通常不会被公开共享,因此模式不可用于学习。因此,缺乏对野外数据库结构的理解,并且大多数被广泛的示例都属于共同的开发框架或来自教科书或发动机基准设计。SchemAdb包含在我们已标准化为MySQL语法的公共存储库中找到的2,500个样本。我们提供了我们的收集和转型方法,摘要统计和结构分析,并讨论了几个域中的潜在下游研究任务。
translated by 谷歌翻译
网络欺骗是作为对攻击者和数据盗贼保卫网络和系统的有希望的方法。然而,尽管部署相对便宜,但由于丰富的互动欺骗技术在很大程度上被手动的事实,规模的现实内容的产生是非常昂贵的。随着最近的机器学习改进,我们现在有机会为创建逼真和诱惑模拟内容带来规模和自动化。在这项工作中,我们提出了一个框架,以便在规模上自动化电子邮件和即时消息风格组通信。组织内的这种消息传递平台包含私人通信和文档附件内的许多有价值的信息,使其成为对手的诱惑目标。我们解决了模拟此类系统的两个关键方面:与参与者进行沟通的何时何地和生成局部多方文本以填充模拟对话线程。我们将LognormMix-Net时间点流程作为一种方法,建立在Shchur等人的强度建模方法上。〜\ Cite {Shchur2019Ints}为单播和多铸造通信创建生成模型。我们展示了使用微调,预先训练的语言模型来生成令人信服的多方对话线程。通过将LognormMix-Net TPP(要生成通信时间戳,发件人和收件人)使用语言模型来模拟实时电子邮件服务器,该语言模型生成多方电子邮件线程的内容。我们对基于现实主义的数量的基于现实的属性评估生成的内容,这鼓励模型学会生成将引起对手的注意力来实现欺骗结果。
translated by 谷歌翻译
Spear Phishing is a harmful cyber-attack facing business and individuals worldwide. Considerable research has been conducted recently into the use of Machine Learning (ML) techniques to detect spear-phishing emails. ML-based solutions may suffer from zero-day attacks; unseen attacks unaccounted for in the training data. As new attacks emerge, classifiers trained on older data are unable to detect these new varieties of attacks resulting in increasingly inaccurate predictions. Spear Phishing detection also faces scalability challenges due to the growth of the required features which is proportional to the number of the senders within a receiver mailbox. This differs from traditional phishing attacks which typically perform only a binary classification between phishing and benign emails. Therefore, we devise a possible solution to these problems, named RAIDER: Reinforcement AIded Spear Phishing DEtectoR. A reinforcement-learning based feature evaluation system that can automatically find the optimum features for detecting different types of attacks. By leveraging a reward and penalty system, RAIDER allows for autonomous features selection. RAIDER also keeps the number of features to a minimum by selecting only the significant features to represent phishing emails and detect spear-phishing attacks. After extensive evaluation of RAIDER over 11,000 emails and across 3 attack scenarios, our results suggest that using reinforcement learning to automatically identify the significant features could reduce the dimensions of the required features by 55% in comparison to existing ML-based systems. It also improves the accuracy of detecting spoofing attacks by 4% from 90% to 94%. In addition, RAIDER demonstrates reasonable detection accuracy even against a sophisticated attack named Known Sender in which spear-phishing emails greatly resemble those of the impersonated sender.
translated by 谷歌翻译
Searching long egocentric videos with natural language queries (NLQ) has compelling applications in augmented reality and robotics, where a fluid index into everything that a person (agent) has seen before could augment human memory and surface relevant information on demand. However, the structured nature of the learning problem (free-form text query inputs, localized video temporal window outputs) and its needle-in-a-haystack nature makes it both technically challenging and expensive to supervise. We introduce Narrations-as-Queries (NaQ), a data augmentation strategy that transforms standard video-text narrations into training data for a video query localization model. Validating our idea on the Ego4D benchmark, we find it has tremendous impact in practice. NaQ improves multiple top models by substantial margins (even doubling their accuracy), and yields the very best results to date on the Ego4D NLQ challenge, soundly outperforming all challenge winners in the CVPR and ECCV 2022 competitions and topping the current public leaderboard. Beyond achieving the state-of-the-art for NLQ, we also demonstrate unique properties of our approach such as gains on long-tail object queries, and the ability to perform zero-shot and few-shot NLQ.
translated by 谷歌翻译
We present a method for providing statistical guarantees on runtime safety and goal reachability for integrated planning and control of a class of systems with unknown nonlinear stochastic underactuated dynamics. Specifically, given a dynamics dataset, our method jointly learns a mean dynamics model, a spatially-varying disturbance bound that captures the effect of noise and model mismatch, and a feedback controller based on contraction theory that stabilizes the learned dynamics. We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound. We employ techniques from Extreme Value Theory (EVT) to estimate, to a specified level of confidence, several constants which characterize the learned components and govern the size of the tracking error bound. This ensures plans are guaranteed to be safely tracked at runtime. We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot, whereas baselines that ignore the model error and stochasticity are unsafe.
translated by 谷歌翻译
Sepsis is a deadly condition affecting many patients in the hospital. Recent studies have shown that patients diagnosed with sepsis have significant mortality and morbidity, resulting from the body's dysfunctional host response to infection. Clinicians often rely on the use of Sequential Organ Failure Assessment (SOFA), Systemic Inflammatory Response Syndrome (SIRS), and the Modified Early Warning Score (MEWS) to identify early signs of clinical deterioration requiring further work-up and treatment. However, many of these tools are manually computed and were not designed for automated computation. There have been different methods used for developing sepsis onset models, but many of these models must be trained on a sufficient number of patient observations in order to form accurate sepsis predictions. Additionally, the accurate annotation of patients with sepsis is a major ongoing challenge. In this paper, we propose the use of Active Learning Recurrent Neural Networks (ALRts) for short temporal horizons to improve the prediction of irregularly sampled temporal events such as sepsis. We show that an active learning RNN model trained on limited data can form robust sepsis predictions comparable to models using the entire training dataset.
translated by 谷歌翻译
Different video understanding tasks are typically treated in isolation, and even with distinct types of curated data (e.g., classifying sports in one dataset, tracking animals in another). However, in wearable cameras, the immersive egocentric perspective of a person engaging with the world around them presents an interconnected web of video understanding tasks -- hand-object manipulations, navigation in the space, or human-human interactions -- that unfold continuously, driven by the person's goals. We argue that this calls for a much more unified approach. We propose EgoTask Translation (EgoT2), which takes a collection of models optimized on separate tasks and learns to translate their outputs for improved performance on any or all of them at once. Unlike traditional transfer or multi-task learning, EgoT2's flipped design entails separate task-specific backbones and a task translator shared across all tasks, which captures synergies between even heterogeneous tasks and mitigates task competition. Demonstrating our model on a wide array of video tasks from Ego4D, we show its advantages over existing transfer paradigms and achieve top-ranked results on four of the Ego4D 2022 benchmark challenges.
translated by 谷歌翻译